2022 数学物理方法(一)——解析函数与留数定理(北京大学)1467128559 最新满分章节测试答案
本答案对应课程为:点我自动跳转查看
本课程起止时间为:2022-02-22到2022-06-30
解析函数 复数和解析函数单元测验
1、 问题:已知一复数,有确定的模而辐角不定,则
选项:
A:此复数为
B:此复数为
C:此复数为
D:此复数不存在
答案: 【此复数为
2、 问题:在扩充的复平面上存在一个复数,其模与辐角均无确定值,则:
选项:
A:此复数为 0
B:此复数为 1
C:此复数为
D:此复数为
答案: 【此复数为
3、 问题:
选项:
A:一定为正数
B:一定为负数
C:一定为实数
D: 一定为纯虚数
答案: 【一定为实数 】
4、 问题:已知
选项:
A:
B:
C:
D:
答案: 【
5、 问题:在
选项:
A: 一定存在唯一一个聚点
B:一定存在不止一个聚点
C:存在聚点,但数量不定
D:不一定存在聚点
答案: 【存在聚点,但数量不定】
6、 问题:复数序列的极限
选项:
A:一定存在
B:一定不存在
C:可能存在
D: 一定为
答案: 【可能存在】
7、 问题:序列
选项:
A:
B:
C:
D:
答案: 【
8、 问题:序列
选项:
A:
B:
C:
D:
答案: 【
9、 问题:若函数
选项:
A: 在该点成立
B:在该点及其邻域内成立
C:在该函数的定义域内处处成立
D: 可能在
答案: 【 在该点成立】
10、 问题: 下列说法中,哪一个是正确的?
选项:
A:函数在某点可导,则在该点一定连续
B: 函数在某点不可导,则在该点一定不连续
C:连续函数必可导
D:函数在某点是否可导,与函数在该点是否连续无关
答案: 【函数在某点可导,则在该点一定连续 】
11、 问题: 函数在
选项:
A:C-R方程在
B:函数在
C:C-R方程在
D:函数在
答案: 【函数在
12、 问题: 函数在一点解析的定义是
选项:
A: 函数在该点可导
B: 函数在该点可导,但在该点的空心邻域内不可导
C:函数在该点不可导,但在该点的空心邻域内处处可导
D:函数在该点及其邻域内处处可导
答案: 【函数在该点及其邻域内处处可导】
13、 问题:函数
选项:
A:
B:
C:
D:
答案: 【
14、 问题:已知函数
选项:
A:
B:
C:
D:
答案: 【
多值函数 初等解析函数与多值函数单元测验
1、 问题:已知解析函数 f(z) 的实部 u(x,y) = x + y,则虚部 v(x,y) 为:
选项:
A:x-y
B:y-x
C:x
D:y
答案: 【y-x】
2、 问题: 已知解析函数 f(z) 的实部 u(x,y) = sinx coshy,则虚部 v(x,y) 为:
选项:
A:sinx sinhy
B: cosx sinhy
C: cosx coshy
D:−cosx sinhy
E: −cosx coshy
F:−sinx sinhy
答案: 【 cosx sinhy 】
3、 问题:当
选项:
A:无定义
B:1
C:0
D:−∞
答案: 【1】
4、 问题:已知
选项:
A:解析
B:不解析
C:可能解析,也可能不解析
D:与 z →∞的方式有关
答案: 【解析】
5、 问题:已知
选项:
A:解析
B:不解析
C:可能解析,也可能不解析
D:与
答案: 【不解析】
6、 问题:函数
选项:
A:周期性
B:解析性
C:连续性
D:函数值单调变化
答案: 【函数值单调变化】
7、 问题:当
选项:
A:有界,介于±1 之间
B:趋于∞
C:与 z →∞的方式有关
D:趋于 0
答案: 【与 z →∞的方式有关】
8、 问题: 函数
选项:
A: 全复平面
B:单位圆内
C:−1 ≤ Re w ≤ 1
D: −1 ≤ In w ≤ 1
答案: 【 全复平面】
9、 问题:当
选项:
A: 有界,介于±1 之间
B: 趋于∞
本文章不含期末不含主观题!!
本文章不含期末不含主观题!!
支付后可长期查看
有疑问请添加客服QQ 2356025045反馈
如遇卡顿看不了请换个浏览器即可打开
请看清楚了再购买哦,电子资源购买后不支持退款哦