2021 数学分析3(五)(天水师范学院) 最新满分章节测试答案
- 第十六章 多元函数的极限与连续 第一单元 第十六章 多元函数的极限与连续 第一单元测验
- 【作业】第十六章 多元函数的极限与连续 第二单元 第十六章 多元函数的极限与连续 第二单元作业
- 第十六章 多元函数的极限与连续 第三单元 第十六章 多元函数的极限与连续 第三单元测验
- 第十六章 多元函数的极限与连续 第二单元 第十六章 多元函数的极限与连续 第二单元测试
- 【作业】第十七章 多元函数微分学 第一单元 第十七章 多元函数微分学 第一单元作业
- 第十七章 多元函数微分学 第一单元 第十七章 多元函数微分学 第一单元测验
- 【作业】第十七章 多元函数微分学 第二单元 第十七章 多元函数微分学 第二单元作业
- 第十七章 多元函数微分学 第二单元 第十七章 多元函数微分学 第二单元测验
- 【作业】第十六章 多元函数的极限与连续 第一单元 第十六章 多元函数的极限与连续 第一单元作业
- 第十八章 隐函数定理及其应用 第一单元 第十八章 隐函数定理及其应用 第一单元测验
- 【作业】第十八章 隐函数定理及其应用 第一单元 第十八章 隐函数定理及其应用 第一单元作业
本答案对应课程为:点我自动跳转查看
本课程起止时间为:2021-08-23到2022-01-31
本篇答案更新状态:已完结
第十六章 多元函数的极限与连续 第一单元 第十六章 多元函数的极限与连续 第一单元测验
1、 问题:平面点集的非孤立界点必是
选项:
A:内点
B:外点
C:聚点
D:孤立点
答案: 【聚点】
2、 问题:平面点集的外点必是
选项:
A:聚点
B:孤立点
C:界点
D:其他选项都不对
答案: 【其他选项都不对】
3、 问题:下面哪个选项不可能是二元函数的图像
选项:
A:坐标平面
B:平面上的点集
C:坐标轴
D:三维空间中的球面
答案: 【三维空间中的球面】
4、 问题:平面点集的内点必是
选项:
A:外点
B:界点
C:聚点
D:孤立点
答案: 【聚点】
5、 问题:开集中的点可能是
选项:
A:集合的内点
B:集合的外点
C:集合的聚点
D:集合的界点
答案: 【集合的内点;
集合的聚点】
6、 问题:非空域中的点可能是
选项:
A:集合的内点
B:集合的界点
C:集合的外点
D:集合的聚点
答案: 【集合的内点;
集合的界点;
集合的聚点】
7、 问题:二元函数的定义域可能是
选项:
A:平面上的曲线
B:平面上的闭集
C:三维空间上的球及其内部
D:三维空间上的立方体
答案: 【平面上的曲线;
平面上的闭集】
8、 问题:闭集中的点可能是
选项:
A:集合的外点
B:集合的内点
C:集合的聚点
D:集合的孤立点
答案: 【集合的内点;
集合的聚点;
集合的孤立点】
9、 问题:二元函数的图像可能是
选项:
A:平面上的曲线
B:三维空间中的球面
C:三维空间中的曲线
D:三维空间中的曲面
答案: 【平面上的曲线;
三维空间中的曲线;
三维空间中的曲面】
10、 问题:平面上点的空心邻域是
选项:
A:正确
B:错误
答案: 【正确】
11、 问题:平面上点的空心邻域是
选项:
A:正确
B:错误
答案: 【错误】
12、 问题:闭域一定是连通闭集
选项:
A:正确
B:错误
答案: 【正确】
13、 问题:连通开集一定是开域
选项:
A:正确
B:错误
答案: 【正确】
14、 问题:闭域套定理相应的开域套定理仍成立
选项:
A:正确
B:错误
答案: 【错误】
15、 问题:无界点集必有聚点
选项:
A:正确
B:错误
答案: 【错误】
16、 问题:有界点集的任意开覆盖必有有限子覆盖
选项:
A:正确
B:错误
答案: 【错误】
17、 问题:有界闭集的任意开集覆盖必有有限子覆盖
选项:
A:正确
B:错误
答案: 【正确】
18、 问题:平面点集的聚点一定属于该点集
选项:
A:正确
B:错误
答案: 【错误】
19、 问题:平面上点的空心邻域是
选项:
A:正确
B:错误
答案: 【错误】
20、 问题:连通闭集一定是闭域
选项:
A:正确
B:错误
答案: 【错误】
21、 问题:闭域套定理相应的闭集套定理仍成立
选项:
A:正确
B:错误
答案: 【正确】
22、 问题:有界点集必有聚点
选项:
A:正确
B:错误
答案: 【错误】
23、 问题:二元函数的定义域是二元函数的图像在平面上的投影
选项:
A:正确
B:错误
答案: 【正确】
【作业】第十六章 多元函数的极限与连续 第二单元 第十六章 多元函数的极限与连续 第二单元作业
1、 问题:设,,且在附近有. 证明
评分规则: 【 由,对任意,存在,当时,
由,对上述,存在正数,当时,
取,在邻域上,,所以
】
2、 问题:讨论函数在点(0,0)的重极限和累次极限
评分规则: 【 时,不存在,所以累次极限不存在
同理另一个累次极限也不存在
而,所以重极限存在,为0
】
3、 问题:讨论函数在点(0,0)的重极限和累次极限
评分规则: 【 时,不存在,所以累次极限等于0
同理另一个累次极限也为0
, 所以重极限不存在
本文章不含期末不含主观题!!
本文章不含期末不含主观题!!
支付后可长期查看
有疑问请添加客服QQ 2356025045反馈
如遇卡顿看不了请换个浏览器即可打开
请看清楚了再购买哦,电子资源购买后不支持退款哦